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Probability Distribution of the Phases in a Crystal with Heavy Atoms
I1. Non-Centrosymmetric Crystal: Probability Distribution of the Phase Angle

By S.PARTHASARATHY

Department of Physics, University of Madras, Madras 25, India

(Received 24 March 1964 and in revised form 11 September 1964)

The probability distribution of the difference between the phase of the structure factor due to all the
atoms in the unit cell and that due to the heavy atoms alone has been worked out. The cumulative
function of this phase difference is worked out for the various cases, namely, a non-centrosymmetric
crystal containing, besides a large number of light atoms, one, two and many heavy atoms in the unit
cell. The results of the theory are used to compare the heavy-atom phased Fourier of the centrosym-
metric and non-centrosymmetric crystals. The theory is also applied to a discussion of the determination
of the phase angle of a reflexion by the anomalous-dispersion method. The theoretical results have been
tested with the data from hypothetical as well as actual two-dimensional models.

Introduction

In part I, the expressions for the fractional number of
reflexions having the same sign as the heavy-atom
contribution were worked out for a centrosymmetric
crystal for different numbers of heavy atoms in the
unit cell. In this paper it is proposed to consider the
corresponding problem for a non-centrosymmetric
crystal, namely the distribution of ay —ap=0, where
an and ap are respectively the phases of the structure
factors of a reflexion, contributed by all the atoms in
the unit cell and by the heavy atoms alone. The nota-
tion used here is the same as in part I (Parthasarathy,
1965).

Derivation
of the probability density function of anup=0

We consider a non-centrosymmetric crystal containing
P heavy atoms and Q light atoms in the unit cell so
that the total number of atoms in the unit cell is
P+ Q=N. The structure factor of a reflexion H(=hkl!)
can be written in terms of the contributions from the
P atoms and the Q atoms as

Fy(H)=Fp(H)+ Fo(H) . (M

The vector triangle formed by Fu, Fpand Fgis shown

in an Argand diagram in Fig. 1. The probability
density function of Fy is known to be

P(Fg)=(1/na}p) exp (—|Fql*/0}) . @

From (1) and (2), the probability density function of
Fy for a given Fp is given by

P(Fn; Fp)=(1/ro}) exp [—(1Fn|—|Fp|)}/o3] . (3)

However, the function P(Fy; Fp) is related to the joint
probability of |Fn| and € for a given Fp, namely the
function P(|Ful|, 8; Fp) by the equation

P(Fnl, 0; Fpy=|Fn|P(Fn; Fp) . “4)

From (3) and (4), the conditional joint probability of
|Fn| and @ for a given Fp is given by

P(Fyl, 0; Fp)=(|Fy|/no3) exp [~ {|Fal+|Fel?
—~2|Fyl|Fp| cos 8}/a3]. (5)

Hence the conditional density function of 8 for a given
Fp is given by

P(9; Fp) =SO P(F, 0; Fe)d|Fxl

1 . ®
= oz expl=IFplsin? 0/o3\ " |Falexp[—{IFx]
no} o
—|Fe| cos 0}2/a3)d|Fx] ,
which, after integration becomes
1
P(0; Fp)= P exp (—|Fpl?/ad)+

[Pl cos 6
2)nog

exp (—|Fp|2 sin2 6/o3][1
+erf (|Fplcos 8/ag)] .* (6)
Since (6) is an even function of 8, the density function
of |6| for a particular Fp is given by
P(16]; Fp)=2P(0; Fp)=(1/r) exp (—|Fp|?/o}) +
|Fp| cos @
+ ——
| mog

exp (—|Fpi2 sin? 6/o3)[1

+erf (|Fp| cos B/ag)]. (7)
From (7), the density function of |8| (independent of
Fp) is given by

PO = SF,, P(101; F#)P(Fp)dFp . 8)

It is evident from (8) that the density function of ||
depends on the density function of Fp, which in turn

* Note added in proof: Equation (6) has also been derived
by Mr C. M. Venkatachalam of this Department in connection
with another problem by an entirely independent method.
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depends on the number of heavy atoms in the unit cell.
Accordingly we may consider four important cases,
namely, a non-centrosymmetric crystal containing I,
2, and many heavy atoms (P-atoms), in addition to a
large number of light atoms (Q-atoms). In the partic-
ular case of many heavy atoms, the P-group of atoms
may be either centrosymmetric or non-centrosymmet-
ric.

(a) One-atom case

If the origin is chosen on the heavy atom, the prob-
ability density function of Fp is given by,

P(Fp)=6(Fp—fp)=d(Fp—oap), 9
since g3=f%. Using (9) and (7) in (8), the density
function of 0| is given by

P(16]) =S: P(I61; Fr)3(Fp—or)dFp=P(0], or)

1
= — exp (~03/a)

cosf op
r e exp (—o% sin2 0/c})[1 +erf (ap cos 0/0¢)]

1
= 1 exp (~iiod

C?Sng o exp(—atsin? 0/l +erf (g, cos 0/o)] .

(10)

+

(b) Two atom case

In this case if we choose the origin midway between
the two heavy atoms, the density function of Fp is
given by
P(Fp)=(1/ny20p)/J/1 —(F3/20%); |Fpl<)20p, (11)
since 63 =2f%. Using (11) and (7) in (8), the density
function of |6 is given by

P(l6N = S V;’ap[iexp( —F3/a3)

exp (—F% sin 26/c3){1

d
+erf (| Fp| cos B/JQ)}] nVZap]/l—li}%F—z/Zo"z) (12)
- P P

-

Fn Fa

Fp

v >
0 9 % X

Fig. 1. The Argand diagram representing the structure factor
of a reflexion H(=hkl) in terms of the contributions
from the P- and the Q-atoms.
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Since the integrand involves |Fp| and F%, it is an even
function of Fp and hence (12) can be written
2 SVZar exp (—F}% /aé)de
2|/20p V1 - (F2/203)
2cos 6 SVZUI' |Fp| exp (= F} sin? 0/06)) [1
w220 paq ), V1-(F3/20%)
F
M)]dﬁ:=1}+lz, say .
gQ

Using (A4-1) (Appendix A4) for the first integral /; and
substituting (Fp/}/26p)=x in the second integral I, in
the right hand side of (14), we obtain

P(10h) =

+erf( (13)

P(10)= —exp( -%/oD)Iy(0?)/ 03

+ 2b S‘ x exp (—ax?)
w2 ), Y1—x2
where for simplicity we have put
a=)20,sin /o, and b= )20, cosblo,. (15)

On integration, (14) gives [see Appendix A4, equations
(A-2), (4-4) and (4-9)]

[1+erf (bx)]dx , (14

P(16) = LeXp (= ai/adiai/od) +— 5 2

i3 —a?)

2h2 ® (—c)*
+-7r_2 Zoﬁf Bn+3, D.F(1, n+3

n—

/2’ n+2; bZ) ’

(16)
where c=a?+b2=20%/c2. Expanding the hypergeo-
metric function in the form of a series, (16) becomes

1 [oe] n
P(|8))= - EXP (—a}/o3lo(o3/0?) + 2 1(~(nc_1:)3)

a7

L (—c)"l“(m+n+%)b2m

z .
T m=0n=0 F(n+ l)F(m+n+2)F(m+%)

The series on the right hand side of (17) can be easily
evaluated for small values of g2, say o2 ~0-2. However,
the convergence of the series rapidly decreases as o2
increases, so that it is not convenient to use (17) for
moderate and large values of ¢%. For such values of
0? it is more convenient to obtain P(|0|) by numerical
integration. However, (14) is not convenient for num-
erical integration since the integrand has a singularity
at x=1. To make it suitable for numerical integration,

-(14) can be modified and written as follows (see Ap-

pendix A, equations (4-2) and (4-12)]:

P(l0h= ~6Xp( a3/o)I(at/03)

2a%
- ,;/ZS Y1~y exp (—a)l1 +erf (b)y)ldy

2b 4b2

+ 32 + nZS V1—y2 exp (—203y%/ad)dy .

(18)
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To obtain P(|f|) these integrals were evaluated by a
numerical method for particular values of a3, say
62=0-4, 0-6 and 0-8.

(¢) Many-atom case (P-group centrosymmetric)

If we choose the origin at the centre of inversion
of the P-group, Fp will be real and the density function
of Fp will be given by

P(Fp)=(1/)2n03) exp (—F3%/20%) ; |Fpl<co. (19)

Using (19) and (7) in (8), the density function of |6] is
given by

_ [t exp(—F}/203) (1
T e L
|Fp| cos 8
VnoQ—exP(_F stG/UQ)[

+erf( £ PLCQOS 0)]} dFp. (20)

It is now convenient to use the simplifying substitutions

Y
11 1 l+a?
@ 203 Tt 05 20'20'20 ’ (21a)
and
1 1 sin2@ 1+062—202cos2 60
F rr e

Since the integrand in (20) involves only |Fp| and
F%, it is an even function of the real variable Fp. Hence
from (20) and (21), the density function of |8] can be
shown to be

2 @
PO = | exp (~ F3dF>

2 cos OS 5
o), Frl exp (= FH!

+erf(|Fp| cos 8/o,0n)dFp=1+14, (22)

This gives on integration (see Appendix B, equation
(B-1) and (B-5)]

say .

]
PN = —
| )' ) 1+a?
V20,0, cos 0 V20, cos 6
+ 40T 357 coF ol o |- @

(d) Many-atom case (P-group non-centrosymmetric)

Contrary to the previous cases where Fp was a real
structure factor, (because the P-group was centrosym-
metric with the origin at the inversion centre), the
structure factor Fp is heie complex. The denSIty func-
tion of Fp is given by

P(Fp)=(1/no%) exp (= |Fpl}/o}) ; 0<|Fp|<o0

and —-n<ArgFp<n. (24)

In this case dFp in (8) represents an element of area,
namely |Fp|d|Fpld0p. Hence substituting (24) and (7)
in (8), the density function of |#] will be given by

P(|0)=
@ n 2 — 2
12§ (- _Iﬁz;l_)[exp( 1Felio3)
70p I Fp|=0J-xr 0% n
|Fp| cos 0 |Fp|2sin2 0
fffffffff ool - I
ynog o} {

verf (1 |7l Pleos? 6') }] \Fpld|Fpldp . (25)

Since the integrand in (25) is not an explicit function
of Op, the integration over 8p gives 2m. Further if we
use the simplifying notations,

1 1 1 1

A S S (260)
and
1 1 sin2f _ 1—o}cos? @
T At T e @D

in (25), the density function of |f] will be given by
PO = ——

= {, [exe (—1FpRicd

+ } | Fp| cos 6
O,0N

exp(— | Fp[2/k?) {1

|Fp| cos 8
ter f( 22 )}] \Feld|Fal , @7)

20N

which on integration gives {see Appendix C, equations
(C-2), (C—3) (C-4) and (C-9)] ;

o203 cos? 0

PUo)= 7 + L)
.ML 1+ Lan-[— 0100
* (1 —0? cos? )22 [2+ n tan }'(1 —a? cos? 0)) '

(28)

It is possible to show that the density functions (10),
(18), (23) and (28) are in the normalized form, since
they satisfy the normalization integral
S P(I6])dO=1. (29)
0
However, the integral (29) was not evaluated by an
analytical method since the integrand is a complicated
function of || in each case. The integration was per-
formed by a numerical method which was necessary
to evaluate the cumulative function N(6) (see below).
This established that the integral (29) is unity. Further
the density function must satisfy two other physical
conditions, namely that P(|f|)=1/n when there is no
heavy atom in the unit cell and that P(]0])=4(6) when
the light atom contribution tends to zero. This means
that the following limits should hold:

P(0) —~1/n as o—0 and o3—1, (30)
P(|6]) — 6(8) as and o2—0. (31)

It is readily shown that both results are satisfied by all
the density functions.

03— 1
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Discussion of the theoretical results
The cumulative function of |0, namely N(|6})=
161
S P(|6])d6, has been evaluated by numerical inte-
o

gration corresponding to ¢7=0-2, 0-4, 0-6 and 0-8 for
the various cases and results are given in Table 1.
However, only the values for the two-atom case are
plotted in Fig. 2 in order to show the general nature
of the function N(0). The horizontal line N(6)=1 repre-
sents the cumulative function for ¢2=1-0 while the
line N(|0])=10]/n represents that for ¢2=0. For any
intermediate values of ¢% the corresponding curve
should lie between these two straight lines.

Table 1. Cumulative function N(|6]) for the different
cases at different heavy-atom contributions o3

The four cases are those in which the known P-group consists
of (A) one-atom, (B) two atoms, (C) many atoms, non-centro-
symmetric, (D) many atoms, centrosymmetric.

o2 8] 0° 30° 60° 90° 120° 150° 180°
A 0 337 594 760 866 940 100
02 B 0 315 566 730 840 925 100
Cc 0 3112 560 720 837 920 100
D 0 300 535 695 815 910 100
A 0 462 755 885 944 980 100
04 B 0 433 692 823 900 955 100
C 0 425 680 815 895 950 100
D 0 395 635 775 865 932 100
A 0 62:0 885 960 981 990 100
06 B 0 565 801 890 940 976 100
C 0 550 789 885 938 972 100
D 0 500 723 830 902 950 100
A 0 830 987 998 999 999 100
08 B 0 725 886 935 963 980 100
¢ 0 715 893 945 971 985 100
D 0 632 816 890 937 970 100

The results of the theory can be used to discuss the
general nature of the heavy-atom method from the point
of view of the number (P) and fractional contribution
o? of the heavy atoms in the unit cell. In general, a
larger value of N(|6]) for a given |f] will be more
favourable for the determination of a structure by the
heavy-atom method. This is so because the larger the
value of N(]8]), the larger will be the probable number

06
N(B)
04

02

1 ! L

Y 1 L )
0 30 60 90 120 150 180

© IN DEGREES

Fig. 2. The cumulative function of |8]|=|ax —ap| for the two-
atom case. The number given near each curve represents the
value of ¢;2.
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of reflexions for which the phase-angle eiror 8(=ay —
ap) will be smaller in magnitude than |8| and the more
nearly will the Fourier synthesis using the phases ap
resemble the true electron-density diagram (see e.g.
Sim, 1961). However, as we have seen, N(|8]) for a given
|6] and o2 depends on the number of heavy atoms.
To have a direct comparison of the different cases,
the function N(]6|) for the four cases is plotted on a
single diagram (Fig. 3) for a particular value of 63 =0-6.
From Fig. 3 and Table 1 it is easy to see that, for a
given value of a2,

0% <{0>,=0>m.4<{O)r-¢

where the subscripts to the expectation symbol refer
to the number of heavy atoms in the unit cell. Since
the case in which the mean phase angle error, i.e. {(8),
is smaller would be more favourable for structure
determination by the heavy-atom method, the cases
with P=1 or 2 seem to be more favourable than the
many-atom case. However, from the point of view of
interpreting the y’-synthesis, the many-atom case with
a non-centrosymmetric P-group is more favourable
than the others. This is because the spurious duplica-
tion of the structure about the centre of symmetry of
the P-group, occurring in the cases with P=1 or 2 will
not arise in the many-atom case with a non-centrosym-
metric P-group. Further, since the terms for which
| Fp| ~0 are omitted in the pratical computing ofthe y’-
syntheses, the actual distribution of |Fp| is also im-
portant in determining the success of the heavy-atom
method as this depends on the number of terms that
can be put in the early Fourier syntheses. The percen-
tage of reflexions for which yp(=|Fp|/ap) is less than
say 0-1 is larger when the P-group of atom is centro-
symmetric than when it is non-centrosymmetric (the
case P=1 being an exception). Thus from a practical
point of view of including more terms (obviously when
P=1, every term can be included), and from the point
of view of interpreting the heavy-atom-phased Fourier
syntheses, the many-atom case with a non-centrosym-

08
N(B)
06
04
02
1 1 1 1 1 ]
0 30 60 90 120 150 180
© IN DEGREES

Fig. 3. The cumulative function of |f]=|anx—ap| for the
various cases corresponding to ¢;2=0-6. The symbols 1, 2,
MA and MC near the curves respectively represent the one-,
two-, many-atom (P-group non-centrosymmetric) and many-
atom (P-group centrosymmetric) cases.
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metric P-group is more favourable than the others. It
may, however, be noted that all terms can be included
in the y’-synthesis by employing a simple weighting
function which becomes useful in improving the res-
olution of the unknown atoms, especially when the
heavy-atom contribution is small (For details see Blow
& Crick,1959 and Sim, 1960).

From Fig. 3 and Table 1 it is easily seen that the
mean phase-angle error (#)p for a given number (P)
of heavy atoms in the unit cell decreases as 67 increases.
Thus, «p would become closer to ay as 62 increased.
Since better phase information leads to better resolu-
tion of the unknown atoms, it follows from the above
that the resolution of the Q-atoms improves with in-
creasing value of ¢2. This result deduced qualitatively
is in agreement with that obtained by Luzzati (1953),
who has considered the question of resolution of the
unknown atoms in a quantitative way using statistical
methods.

It would be worth while comparing the cases of a
centrosymmetric and a non-centrosymmetric crystal
having the same value of ¢ and the same number of
heavy atoms. This could be done by comparing the
values of P(+) in Table 1 of part I with the values of
N(8) in Table 1 of this part. For example, we may
take the case of one heavy atom having the value of
02=0-6. From part I we see that 89%; of the reflexions
are likely to have the same phase as the heavy atoms.
On the other hand, as shown in Table 1 of this part,
only 62% of the reflexions have a phase-angle error
6 < 30° in this case. Consequently, it is clear the centro-
symmetric case is much more favourable for solution
by the heavy-atom technique. This is true not only
because P(+) is appreciably higher than N(30°), but
also because in the centrosymmetric case when the
sign is positive the phase is exactly correct and equal
to the heavy-atom phase. A similar relation is found
for the other values bf ¢? and with other types of
P-atom groups. It may be stated as a general propo-
sition that a centrosymmetric crystal (or projection)
will be much easier to solve than a non-centrosym-
metric crystal (or projection) under similar conditions.
This broadly agrees with the experience of structure
analyses (see also Sim, 1957). This also agrees with
Luzzati’s result (1953) that in the y’-synthesis the ex-
pected height of an atomic peak corresponding to an
atom of the Q-type is greater when the crystal is centro-
symmetric than when it is non-centrosymmetric, under
similar conditions.

It was mentioned in part I that, in connection with
the resolution of the twofold ambiguity in the process
of phase determination by the anomalous-dispersion
method, it would be useful to know the frational num-
ber of reflexions for which 8 <90° for a given o2 corres-
ponding to the various cases. The required data are
now available in the middle column of Table 1. From
this table it is clear that, if we choose the acute angle
(say 8,) out of the two possibilities, namely § and 7z —6,
then the percentage of reflexions whose phases are cor-

rectly determined will be a maximum when P is just
one in number and is least when the P-group consists of
many atoms with a centrosymmetric configuration.
However, the few reflexions for which the true phase
is actually equal to the obtuse angle 7 —6, would lead
to wrong Fourier coefficients if we choose the acute
angle for all the reflexions and such wrong coefficients
will lead to spurious details in the Fourier map. In
such cases, it seems useful to use a weighting function
in which both the possible phases are given weights
according to the probabilities with which they occur.
Such a weighting function has been derived in this
department. This weighting function is under test and
the results will be published separately (Parthasarthy,
Ramachandran & Srinavasan, 1964).

The results of the theory have been tested with the
data from actual crystals as well as hypothetical two-
dimensional models. The complete data regarding the
tests are given in Table 2. In each case the mean value
of o2, say (6%}, was obtained as described in part I
and the theoretical curve corresponding to the value
of {¢?) was drawn by interpolation. The experimental
data in each case are seen to agree with the corres-
ponding theoretical curve, as is evident from Fig. 4.

ot R
o
X
osf >z
A
¥
osr A7
Ni(e) ¥
-4 /
o4t 4,
/
o2 %
0 1 1 1 1 1 1
30 60 90 120 150 180

6 IN DEGREES

(a)

08
06
N(e)
04
02
0 1 1 1 1 1 1
30 60 90 120 150 180
6 IN DEGREES

(b)

Fig. 4. Verification of the cumulative functions N(6) for (a)
the one-atom and many-atom (P-acentric) cases and (b) the
two-atom case respectively.

In (@) @ =P4S; and x =the one-atom case; in (b)) A=
L-tyrosine HBr, x =t-tyrosine HCl and @ =cellobiose plus
two chlorine atoms.
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APPENDIX A

If we substitute Fp/)2cp=cos (p/2) in the first term
on the right hand side of (13), we get

1 n
h=—\ exp (20 cos? (ool
0
1 n
= —exp (~otjad) | exp (—t cos ploddp
0
1
= —exp (—ot/o)l(at/od) , (4-1)
where Iy(x) is the Bessel function of imaginary argu-

ment, of order zero. The second term on the right-
hand side of (14) can be written

1 — q2x2
ZbS xexp ( ax)dx

2 Y Vr_—xg
2b ¢! xexp (—a%x?) 'y g
=y SO ——V_l——xz— erf (bx)dx=1'+1",say.

(4-2)

If we expand exp (—x) in terms of hypergeometric
series (Sneddon, 1961; problem 11(i) p. 46), then I
becomes

1033
Making the substitution x2=y in (A4-3) we get

_ b
I'= WSO(I =y F(os o —ay)dy

which on integration becomes (Sneddon, 1961; p. 47,
problem 16(i)]
, b
1 = ;Slvzﬁ(l, %)ZFZ(as 1; &, %; _.aZ)
2
T on2

If erf (x) is represented by the hypergeometric function,
I'" in (A-2) can be written (Erdelyi, 1954, Vol. 2, p. 295)

. 2b S‘ x exp (—a2x?) o

Fi(l; 35 —a?). (4-4)

2 ), VT—x
2bx
r exp (—62x2),Fi(1; 3; b2x?)dx . (A4-5)
On substitution x2=y, (4-5) becomes
., 2b2 !
1= 25\ U=t exp (“oNF(1: 15 b9y
(A4-6)
where
a2+ b2 =(26%/03)(cos? O +sin? 0)=20%c3=c. (A-T)

Expanding exp (—cy) into a power series, (4-7) can be
written
2b2 © (—c)n ¢!
= 20 3 O st =) A 35 by
(4-8)
which on integration becomes [Sneddon, 1961; p. 47,
problem 16(i)]

W2 (—c)n
=22 5 O g s Rl n+ 333n+2:8)

U Folo: a: —a2x2
Il__: 23b2 S 7x1 1(“9 &, a x) d,\’ . (A"3) 2 =0 n!
™2 Jo Y1 —x2 (A4-9)
Table 2. Details of the crystals used for the verification of the theoretical results
Plane N(90°)
No.* Type Crystal Plane 012 Theoretical ~ Experimental
1 One-atom case Hypothetical prl 0-615 960 % 94-7%
(CoC)
2 Two-atom case L-tyrosine HBr )74 0-843 94-8 91-3
C9H11NO3HBI’
3 Two-atom case L-tyrosine HCI § 24 0-474 84-8 88-1
CoH;NO3HClI
4 Two-atom case Hypothetical — pg 0-3 770 75-8
Cellobiose +2Cl
C12011H22Cl
5 Many-atom case Based on pg 0-82 94-8 93-8
(P-group phosphorus
non-centrosymmetric) pentasulphide
P4S2(35)3

* 1. This 2-dimensional hypothetical structure (CyCl) consists of 9 carbon atoms and 1 chlorine atom randomly distributed in

a rectangular cell.
. This crystal was solved by Srinivasan (1959a).
. This crystal was solved by Srinivasan (1959b).

PWN

it a hypothetical structure with heavy atoms.

W

. Into the structure of cellobiose (Jacobson, Wunderlich & Lipscomb, 1961) two chlorine atoms were introduced to make

. In the structure of P4Ss (van Houten & Wiebinga, 1957) three of the sulphur atoms in the asymmetric unit were assumed to

scatter three times as strongly as a ‘real’ sulphur atom (see Ramachandran & Ayyar, 1963) and this makes the structure a

suitable hypothetical crystal with heavy atoms.
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In (4-2), if we put x2=y, we get

1
1= 22 { (=)t e (~ali+ert (Y dy
T 0

2b ¢! 1—y
=-—5 So exp (—a2p)[1+erf (by»d)/1-y,

which on integration by parts gives

1= = 2 (e (—a@n{l+ert Y0l T)

+ 2328 V1—yp dlexp (—a){l +erf (bY»)}] . (4-10)

Since the first term on the right-hand side vanishes,
and since

dlerf (bYy)]=b exp (—b)/Vny , (4-10)
can be written
! 14 2b
_ 242 b s
~ S (1=y)* exp (—a%y) [1 +erf (by/y)ldy

+ %Soy‘*(l ~y)* exp [—(a2+bHyldy . (4-11)

Putting |/y =z, the last term in (4-11) becomes

4b2 ! —— )
— So /1 —z2 exp (—203z2/03)dz .
However, z is a dummy variable so that for uniformity
of representation it can be replaced by y. Hence (4-11)
becomes
v 2b
I'+1" = =

242
naalz S V1—y exp (—azy)[1 +erf (byy)dy

ab?

+—S]V1—y2exp( 222y, (4-12)

APPENDIX B
We shall first work out the integral 5 in (22). This is

V2 @ SO exp (—F}/0p)d(Feleo)

w2 oon

=
_ Qo
Y2 .o10n8
which, on making the substitution from (21a), becomes
L=oy/n)/1+a2. (B-1)
The second integral in (22) is I, namely

2cos @ (®
I= V——ZS |Fp| exp (—|Fp|?/0?)[]
TG1020x5 Jo

+erf (|Fp| cos 8/a,0n)]dFp

__ Q_Cﬂgw
T n)20,0.0% b
+erf (|Fp| cos 0/a,0n)ldlexp (—|Frl?/e?)],
which, on integration by parts, gives
L= —kjl[{l +erf (k2Fp)} exp (- F3/0?]5 +

+k2 SO exp (— F3/d[l +erf (k,Fp)] . (B-2)

Here

,_ 0*cosf _

= 7'51/20'10'20'N

12 2010, cos 0

z(1 +02 20, cos26) ’
and
k,=cos 8/a.,on , (B-3)

where (216) has been used. Since dferf (k,Fp)]=
(2k,/ V) exp (—k3F%), (B-2)simplifies to

2, ¢
Vlnz SO exp [_ (L + k2 )F%]dFP
=i+ (k2 l/3+ (10D | - (B-4)

Substituting for k,, k, and ¢ from (B-3) and (215),
(B-4) gives

[4=k%+

_ y2.0105cos 6 _1"201 cos 6
L= 7(1+ 03 —202 cos? 0) V1+0? - (B9
APPENDIX C
If we put
2cos @ cos 8
Vrdtasy, P M gy T2 (D

in (27), we have

2 =]
PUBD= s\ 1FA exp (= IFpPIDAIF

+p SO |Fpl2exp (—|Fel2/k?)d| Fl

+p1 So |Fp|2 exp (—|FpI?/k?) erf(pa| Fpl)d|Fp|

=15+]6+I7,Say. (C—2)

On integration, /s gives
Is=(k}/nato3)=a3/m, (C-3)
since
k§=aia30% (equation 26a).
Using equation 381, p. 820 of Korn & Korn (1961),
Is becomes |/mp k3[4, which on substitution for p, and
k from (C-1) and (26b), gives

0,63 cos 0

Ie= 21 —0? cos? B2 (C-4)
From (C-2), I; can be written
k2
b= = 22\ \Frl rt (pal Frl)dlexp (~|Fek0)

which on integration by parts gives
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kzpl ©
h=-—= [|Fp| erf (pa| Fpl) exp (—|Fp|?/k?)]5
k2p1 [}
+= SO exp (—|Fp|2/k?)d[|Fp| erf (pa|Fp)] . (C-5)

Since, on applying the limits the first term in the right-
hand side of (C-5) vanishes, we have

k?p;
r= =2\ exp (<1FeP k) et (pl Fe)dl Pl

k2pyp,
+ S | ol exp (Ui DI FolPM I

V
=]i+18  say. (C-6)
Now
1 e l—otcos2f cos26 1 1
gz T aioloy, o2c%  ddodey, ki
(C-7)

If we put |Fp|/k=y in (C-6) and use (C-7), we get

k3
1= 5\ "exp (=7 exf (paky)dy

k2k2 ©
L P oS exp (—|Fpl2/k3)d(|Fp|?/k?)

2[/7[ 0
_pk 1 P1Dok?kG 5
== —V;tan (ka)+W’ (C-8)

where equations (25) and (28) of part I have been used.
If we substitute for py, p,, k and ko from equations (C-1)
and 26a, b), the equation (C-8) gives

Acta Cryst. (1965). 18, 1035

1035
_ ojoicosl
"™ 7(1 —0? cos? )
2
0,03 cos 0 gy cos 0
: tan—1 . (C9
(1 —aicos? 67 [ Tdteosid]
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Calculation of Absorption Corrections for Camera and Diffractometer Data

By P.CopPPENS, L. LEISEROWITZ AND D. RABINOVICH

Department of X-ray Crystallography, Weizmann Institute of Science, Rehovoth, Israel

(Received 24 August 1964)

A method is described for the calculation of absorption corrections for Weissenberg and precession
camera, and three- and four-circle diffractometer data. The method has been successfully applied- to

a number of crystals.

Introduction

Several procedures for computation of absorption cor-
rections have been described. Busing & Levy (1957)
have first outlined a method suitable for high-speed
computers and valid for crystals having no re-entrant
angles between bounding planes. However, they did
not derive the components along the crystal axes of the
incident and diffracted beams for upper level reflexions.

Such an extension for both Weissenberg and precession
camera data has been given by Wells (1960). Here we
propose an alternative procedure which makes exten-
sive use of vector algebra and has also been applied to
three- and four-circle cone diffractometers, since these
are now widely used for collection of X-ray and neu-
tron diffraction data.

A FORTRAN program has been written for the
CDC 1604 computer which in its present form calcul-



