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The probability distribution of the difference between the phase of the structure factor due to all the 
atoms in the unit cell and that due to the heavy atoms alone has been worked out. The cumulative 
function of this phase difference is worked out for the various cases, namely, a non-centrosymmetric 
crystal containing, besides a large number of light atoms, one, two and many heavy atoms in the unit 
cell. The results of the theory are used to compare the heavy-atom phased Fourier of the centrosym- 
metric and non-centrosymmetric crystals. The theory is also applied to a discussion of the determination 
of the phase angle of a reflexion by the anomalous-dispersion method. The theoretical results have been 
tested with the data from hypothetical as well as actual two-dimensional models. 

Introduction 

In part I, the expressions for the fractional number of 
reflexions having the same sign as the heavy-atom 
contribution were worked out for a centrosymmetric 
crystal for different numbers of heavy atoms in the 
unit cell. In this paper it is proposed to consider the 
corresponding problem for a non-centrosymmetric 
crystal, namely the distribution of O~N--O~p=O, where 
cqv and ee are respectively the phases of the structure 
factors of a reflexion, contributed by all the atoms in 
the unit cell and by the heavy atoms alone. The nota- 
tion used here is the same as in part I (Parthasarathy, 
1965). 

Derivation 
of the probability density function of aNav=O 

We consider a non-centrosymmetric crystal containing 
P heavy atoms and Q light atoms in the unit cell so 
that the total number of atoms in the unit cell is 
P +  Q =N.  The structure factor of a reflexion H(=hkl) 
can be written in terms of the contributions from the 
P atoms and the Q atoms as 

FN(H)= Fp(H) + FQ(H) . (1) 

The vector triangle formed by Fly, Fp and FQ is shown 
in an Argand diagram in Fig. 1. The probability 
density function of FQ is known to be 

P(FQ)=(1/na~) exp (-IFQIZ/a~) . (2) 

From (1) and (2), the probability density function of 
FN for a given Fp is given by 

P(FN; Fe)=(1/rw~) exp [-(IFNl-IFPI)Z/a~] .  (3) 

However, the function P(Fu; Fp) is related to the joint 
probability of IFlv[ and 0 for a given Fp, namely the 
function P(IFNI, 0; Fp) by the equation 

P(IF~vl, 0; Fp)= IF~vlP(FN; Fe) . (4) 

From (3) and (4), the conditional joint probability of 
[FNI and 0 for a given Fp is given by 

P([FN], O; Fp)=(lFNl/lra~) exp [-{IFevlZ+ lFp] 2 
-21FNIIFPI cos0}/a~].  (5) 

Hence the conditional density function of 0 for a given 
Fp is given by 

P(O; fv )=  P(IFN[, O; fv)dlfNI 
0 

- rw~, exp[-IfPI2sineO/a~'] IFNlexp[--{lfNI 

- I f P l  cos O}2/O2oldlfNI, 

which, after integration becomes 

1 
P(O; Fp)= - ~  exp ( - I fpI2 /~o)+  

I fPl cos 0 
+ 2Vna O e x p ( - I F P I  zsin 20/a~][1 

+ e r f  (IFPlCOS O/aQ)] .* (6) 

Since (6) is an even function of 0, the density function 
of 101 for a particular Fp is given by 

P(I01; Fp)=2P(O; Fp)=(1/rc) exp (-IFPl2/do) + 
IFPI cos 0 

+ l ' n a Q -  exp ( - IFPI  2 sin 2 0/c~o)[1 

+ e f t  (IFPI cos O/oo)]. (7) 
From (7), the density function of 101 (independent of 
F,) is given by 

I P(101" Fp)P(Fp)dFe. P(101)= V, ' (8) 

It is evident from (8) that the density function of 101 
depends on the density function of Fp, which in turn 

* Note added in proof: Equation (6) has also been derived 
by Mr C. M. Venkatachalam of this Department in connection 
with another problem by an entirely independent method. 
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depends on the number of heavy atoms in the unit cell. 
Accordingly we may consider four important cases, 
namely, a non-centrosymmetric crystal containing 1, 
2, and many heavy atoms (P-atoms), in addition to a 
large number of light atoms (Q-atoms). In the partic- 
ular case of many heavy atoms, the P-group of atoms 
may be either centrosymmetric or non-centrosymmet- 
ric. 

(a) One-atom case 
If  the origin is chosen on the heavy atom, the prob- 

ability density function of Fp is given by, 

P(Fp)=t~(Fp-fp)=t~(Fp-o'p)  , (9) 

since a2e=J'2 e. Using (9) and (7) in (8), the density 
function of ]0[ is given by 

_ _  

m 

oo 
P([01) = e(10[; Fp)6(Fp-ap)dFv=P(lOI,  ap) 

0 
1 - exp ( -a2 /a~)  
7[ 

cos 0 ap 
exp ( - a  2 sin E Olaf)[1 + e f t  (ap cos O/aQ)] 

[,/n O'Q 
1 

= - -  exp ( -a? /a~)  
7Z 

COS 0 0" 1 
exp ( - a ~  sin 2 Olaf)[1 + e r f  (al cos 0/a2)]. 

V ~ 0" 2 
(10) 

(b) Two atom case 
In this case if we choose the origin midway between 

the two heavy atoms, the density function of Fp is 
given by 

e(Fp)=(llnW26P)/V'i -(F~/2a~); [FpI < V26p , (11) 

since a~=2f~,. Using (11) and (7) in (8), the density 
function of [01 is given by 

l]/20"p 
p([0[) = j _  g2m" [ 1  exp ( -  F~/a s) 

cos0 IfPI 
+ - -  exp ( - f ~  sin 20/cry){1 

V7[ OQ 

dFp (12) 
+e r f ( I fP I  cos 0/aQ)} n]/2o'p]/1 -(f2e/2a~) 

V 

0 ~' ~ ~" X can cat, 

Fig. 1. The Argand  d iagram represent ing the s tructure factor  
of a reflexion H(=hkl) in terms of the contributions 
from the P- and the Q-atoms. 

Since the integrand involves IFPI and FZe, it is an even 
function of Fp and hence (12) can be written 

2 ll/2oP exp ( - FEe/a~)dFi , 
P(IOI)-  nzVEaP "o ] /1 - (F2 /2a  2) 

2 c o s 0  l] /2ap IFPlexp(- -F2sinZO/a~))[  
"4- 7~3/EV2crv~7  Q " o  . . . . .  1 / i - ( F ~ i  • 1 

+er f ( lFPlc°sO. )]dFp=I ,+12,  say. (13, 
ffQ 

Using (A-l) (Appendix A) for the first integral I~ and 
substituting (Fp/l/2ap)=x in the second integral /2 in 
the right hand side of (14), we obtain 

1 
-al/a2)lo(al)/az gOOD= ~exp  ( 2 2 2 2 

2b t ~1 x exp ( - a 2 x  2) 
+ ~ 3o 1/1-x2 [1 +erf(bx)]dx (14) 

where for simplicity we have put 

a =  l/2al sin O/aE and b =  !/2al cos O/az. (15) 

On integration, (14) gives [see Appendix A, equations 
(A-2), (A-4) and (A-9)] 

1 2b 
o,laE)lo(allaE) + - - ~  P 0 0 1 ) = - ~ e x p ( -  2 2 2 2 1Fl(l.3.,g, _ a  2) 

2b2 ) ( - c )n  fl(n+3 3. - - - -  ~, ½)2F2(I, n + 3/2 , n + 2; b 2) 
+ ~ ,,-0 n! 

(16) 

where c = a  E+b E =2a~/a~. Expanding the hypergeo- 
metric function in the form of a series, (16) becomes 

1 b --aE) n 
-allo2)lo(a,la2) + --  F(n + 3) P(I01)= --~- exp ( 2 2 2 2 ,~ ( 

n-0  

b 2 ~ ~ (-c)nF(m+n+_~)b2m 
+ _ _  ~r I; (17) 

7[ m=0,=0 F(n + l )F(m + n + 2)F(m +-}) " 

The series on the right hand side of (17) can be easily 
evaluated for small values of al 2, say a~_ 0.2. However, 
the convergence of the series rapidly decreases as a~ z 
increases, so that it is not convenient to use (17) for 
moderate and large values of a~ 2. For such values of 
a~ 2 it is more convenient to obtain P(IOD by numerical 
integration. However, (14) is not convenient for num- 
erical integration since the integrand has a singularity 
at x = 1. To make it suitable for numerical integration, 

• (14) can be modified and written as follows (see Ap- 
pendix A, equations (A-2) and (A-12)]: 

P ( 1 0 D = l e x p  2 2 2 2 ( --all~r2)lo(a~laE) 

2aEb (1 
~-~- 30 ]/1 - y  exp (-aEy)[1 +erf(bl/y)]dy 

2b 4b 2 (l 
+ ~ + ---~-J0 l/q -Y2 exp (-2aEyE/a~)dy. (18) 
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To obtain P(I01) these integrals were evaluated by a 
numerical method for particular values of a12. say 
0.~=0.4, 0.6 and 0.8. 

(c) Many-atom case (P-group centrosymmetric) 
If we choose the origin at the centre of inversion 

of the P-group, Fp will be real and the density function 
of Fp will be given by 

p(Fp)=(1/l/2rcaZ) exp (--FEe/20"zv) ; IFP[ < m . (19) 

Using (19) and (7) in (8), the density function of 101 is 
given by 

S +~ exp (-FZe/2aze){1 
P(101)= -0o ]/2rc0"~, ~ exp ( -  FEv/a~) 

IFPI cos 0 [ 
+ I/qz0.Q exp(-F2esin20/0.~) L 1 

+err(  IFPI c°s 0 } aQ ) ] dFp . (20) 

It is now convenient to use the simplifying substitutions 

1 1 1 1 +0.12 (21a) 
o ~ - 2 o ~  + o~o - E ~  2-, 20. ~ a 2a u 

and 

1 1 sin 2 0 1 +a12--Ea z cos 2 0 (21b) 
eE  - -  2 ~ e - e  + 0"g - -  - - 2 - - ~  ~ 20"10"20.7 ¢ 

Since the integrand in (20) involves only IFPI and 
F 2, it is an even function of the real variable Fp. Hence 
from (20) and (21), the density function of 101 can be 
shown to be 

S I/2 exp ( -  F~/oE)dFp P(101)- =3/zaa~v o 

1/2 cos 0 [FP[ exp (-F~,/Q2)[1 
"3t-" ~O'10"20"~ 0 

+erf(lFPlcosO/0.20.N)]dFp=13+I4, say. (22) 

This gives on integration (see Appendix B, equation 
(B-l) and (B-5)] 

e(10l)-  0"2 - -  

~ l / i  + 0.12 
1/20"~ cos 0 "1/20"10"2 COS 0 [1+ ] .  (23) 

+ zr(1 +0"~----2-a~c~s z O) 1/1----~ 

(d) Many-atom case (P-group non-centrosymmetric) 
Contrary to the previous cases where Fp was a real 

structure factor, (because the P-group was centrosym- 
metric with the origin at the inversion centre), the 
structure factor Fp is hme complex. The density func- 
tion of Fp is given by 

P(Fv)=(1/rca2e) exp (--IFvlZ/aZv) ; 0<_lFvl < 
and - ~ r _ _  Arg Fp_< zc. (24) 

In this case dFp in (8) represents an element of area, 
namely [FPldlFPldOv. Hence substituting (24) and (7) 
in (8), the density function of 101 will be given by 

P ( I O l )  = 

1 I 1 oo exp - ---~2~-- l 
n0.~ Ifpl---0 -.,~ 

IFPl cos O ( ,FPlz sinZ O ) { .. 
+ l/TraQ e x p  - cr~ 1 

+er f (  'FPI c°s 0 ) }] [FPIdIFPIdOp (25) 
0.Q , • 

Since the integrand in (25) is not an explicit function 
of Op, the integration over Op gives Err. Further if we 
use the simplifying notations, 

and 

I 1 1 1 
- + - - -  (26a) 

t , ,  1 t ~ 2 ~ N  

s i n  E 0 1 --0"12 COS 2 0 1 _ 1 + _ (26b) 
k2 o~ o~ ko ~ ' 

in (25), the density function of 101 will be given by 

P(,01)- 2 I~ [ 22 exp (-IFPlZ/k~) 
~O'10"N 0 

+ l/zrlFPl~------~ c°st90.20.N exp(--lFPlZ/k 2) {1 

+erf(IFPI cos 0_) 

which on integration gives [see Appendix C, equations 
(C-2), (C-3) (C-4) and (C-9)] 

2 2 
P(101)= a J_~ + ola= cosZ 0 

lr to(1 -a12 cos 20) 

o-,a~cos0 [ 1 ( o-xcos0 )] 
+ (1 o12 cos z 0) 3/2 ½ + - -  tan-1 " - zr !/(1 --0"12 COS 2 0) 

(28) 

It is possible to show that the density functions (10), 
(18), (23) and (28) are in the normalized form, since 
they satisfy the normalization integral 

1 '~ P(lOl)dO= 1 (29) o 

0 

However, the integral (29) was not evaluated by an 
analytical method since the integrand is a complicated 
function of 101 in each case. The integration was per- 
formed by a numerical method which was necessary 
to evaluate the cumulative function N(O) (see below). 
This established that the integral (29) is unity. Further 
the density function must satisfy two other physical 
conditions, namely that P(101)= 1/zc when there is no 
heavy atom in the unit cell and that P([0I)= 6(0) when 
the light atom contribution tends to zero. This means 
that the following limits should hold: 

P(101) --> 1/re as a12 --+ 0 and 0"z __+ 1 , (30) 
e(101)-> d(0) as 0.12-+ 1 and a~-+ 0.  (31) 

It is readily shown that both results are satisfied by all 
the density functions. 
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Discussion of the theoretical results 

The cumulative function of 101, namely N(10I)= 

l l01 P(lOI)dO, has been evaluated by numerical inte- 
o 

gration corresponding to a~=0.2, 0.4, 0.6 and 0.8 for 
the various cases and results are given in Table 1. 
However, only the values for the two-atom case are 
plotted in Fig. 2 in order to show the general nature 
of the function N(O). The horizontal line N(O) = 1 repre- 
sents the cumulative function for a~=1.0 while the 
line N(IOI)=IOI/~ represents that for a~=0. For any 
intermediate values of a~ the corresponding curve 
should lie between these two straight lines. 

Table 1. Cumulative function N(101) for the different 
cases at different heavy-atom contributions a~ 

The four cases are those in which the known P-group consists 
of (A) one-atom, (B) two atoms, (C) many atoms, non-centro- 

symmetric, (D) many atoms, centrosymmetric. 
O'12 101 0 ° 30 ° 60 ° 90 c 120 ° 150 ° 180 ° 

A 0 33-7 59-4 76.0 86.6 94-0 100 
0.2 B 0 31-5 56.6 73.0 84.0 92.5 100 

C 0 31.2 56.0 72.0 83.7 92.0 100 
D 0 30.0 53.5 69.5 81-5 91.0 100 
A 0 46.2 75.5 88.5 94-4 98.0 100 

0.4 B 0 43.3 69.2 82.3 90.0 95.5 100 
C 0 42.5 68.0 81.5 89.5 95.0 100 
D 0 39.5 63.5 77.5 86.5 93.2 100 
A 0 62.0 88.5 96.0 98-I 99-0 100 

0.6 B 0 56.5 80.1 89.0 94.0 97.6 100 
C 0 55.0 78.9 88.5 93.8 97-2 100 
D 0 50.0 72.3 83.0 90.2 95.0 100 
A 0 83.0 98.7 99-8 99.9 99.9 100 

0.8 B 0 72.5 88.6 93.5 96.3 98.0 100 
C 0 71.5 89.3 94.5 97.1 98.5 100 
D 0 63.2 81.6 89.0 93.7 97.0 100 

The results of the theory can be used to discuss the 
general nature of the heavy-atom method from the point 
of view of the number (P) and fractional contribution 
a~ of the heavy atoms in the unit cell. In general, a 
larger value of N(I01) for a given 101 will be more 
favourable for the determination of a structure by the 
heavy-atom method. This is so because the larger the 
value of N(101), the larger will be the probable number 

1"0 
0"8 

0"8 

N(O) 6 

0"4 

0"2 

I I 

o 3'o 6'o 9'o 12o 1'8o 
o IN DEGREES 

Fig. 2. The cumula t ive  funct ion  of  101 = I=N-~PI for the two-  
a t o m  case. The  n u m b e r  given near  each curve represents  the 
value of  oq2. 

of reflexions for which the phase-angle ei ror 0(= cqv- 
e/,) will be smaller in magnitude than 10l and the more 
nearly will the Fourier synthesis using the phases ~p 
resemble the true electron-density diagram (see e.g. 
Sim, 1961). However, as we have seen, g(10l) for a given 
101 and a~ depends on the number of heavy atoms. 
To have a direct comparison of the different cases, 
the function N(IOI) for the four cases is plotted on a 
single diagram (Fig.'3) for a particular value of a~ = 0.6. 
From Fig. 3 and Table 1 it is easy to see that, for a 
given value of a~, 

<0>1 < ( 0 > 2 ~  (O>M. A < <0>21I" C 

where the subscripts to the expectation symbol refer 
to the number of heavy atoms in the unit cell. Since 
the case in which the mean phase angle error, i.e. (0), 
is smaller would be more favourable for structure 
determination by the heavy-atom method, the cases 
with P =  1 or 2 seem to be more favourable than the 
many-atom case. However, from the point of view of 
interpreting the ),'-synthesis, the many-atom case with 
a non-centrosymmetric P-group is more favourable 
than the others. This is because the spurious duplica- 
tion of the structure about the centre of symmetry of 
the P-group, occurring in the cases with P =  1 or 2 will 
not arise in the many-atom case with a non-centrosym- 
metric P-group. Further, since the terms for which 
[Fp] ""0 are omitted in the pratical computing of the ?'- 
syntheses, the actual distribution of IFP[ is also im- 
portant in determining the success of the heavy-atom 
method as this depends on the number of terms that 
can be put in the early Fourier syntheses. The percen- 
tage of reflexions for which yp(= [Fp[/ap) is less than 
say 0.1 is larger when the P-group of atom is centro- 
symmetric than when it is non-centrosymmetric (the 
case P =  1 being an exception). Thus from a practical 
point of view of including more terms (obviously when 
P =  1, every term can be included), and from the point 
of view of interpreting the heavy-atom-phased Fourier 
syntheses, the many-atom case with a non-centrosym- 

1'0 

0"8 
/V(0) 

0"6 ~t4.A 

0"4 

0"2 

0 310 6'0 9'0 1:20 1;0 1;0 

8 IN DEGREES 

Fig. 3. The  cumula t ive  funct ion  of  1Ol=l~v-~PI for  the 
various cases cor responding  to 0.12=0.6. The  symbols  1, 2, 
MA and MC near  the curves respectively represent  the one-,  
two-,  m a n y - a t o m  (P-group  non-cen t rosymmet r ic )  and many-  
a tom (P-group  cen t rosymmetr ic )  cases. 

A C 1 8 - - 4  
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metric P-group is more favourable than the others. It 
may, however, be noted that all terms can be included 
in the 7'-synthesis by employing a simple weighting 
function which becomes useful in improving the res- 
olution of the unknown atoms, especially when the 
heavy-atom contribution is small (For details see Blow 
& Crick,1959 and Sim, 1960). 

From Fig. 3 and Table 1 it is easily seen that the 
mean phase-angle error (O)p for a given number (P) 
of heavy atoms in the unit cell decreases as a 2 increases. 
Thus, av would become closer to c~N as a 2 increased. 
Since better phase information leads to better resolu- 
tion of the unknown atoms, it follows from the above 
that the resolution of the Q-atoms improves with in- 
creasing value of a 2. This result deduced qualitatively 
ib in agreement with that obtained by Luzzati (1953), 
who has considered the question of resolution of the 
unknown atoms in a quantitative way using statistical 
methods. 

It would be worth while comparing the cases of a 
centrosymmetric and a non-centrosymmetric crystal 
having the same value of a 2 and the same number of 
heavy atoms. This could be done by comparing the 
values of P ( + )  in Table 1 of part I with the values of 
N(O) in Table 1 of this part. For example, we may 
take the case of one heavy atom having the value of 
a~ = 0"6. From part I we see that 8 9 ~  of the reflexions 
are likely to have the same phase as the heavy atoms. 
On the other hand; as shown in Table 1 of this part, 
only 62~o of the reflexions have a phase-angle error 
0 < 30 ° in this case. Consequently, it is clear the centro- 
symmetric case is much more favourable for solution 
by the heavy-atom technique. This is true not only 
because P ( + )  is appreciably higher than N(30°), but 
also because in the centrosymmetric case when the 
sign is positive the phase is exactly correct and equal 
to the heavy-atom phase. A similar relation is found 
for the other values bf  a 2 and with other types of 
P-atom groups. It may be stated as a general propo- 
sition that a centrosymmetric crystal (or projection) 
will be much easier to solve than a non-centrosym- 
metric crystal (or projection) under similar conditions. 
This broadly agrees with the experience of structure 
analyses (see also Sim, 1957). This also agrees with 
Luzzati's result (1953) that in the ),'-synthesis the ex- 
pected height of an atomic peak corresponding to an 
atom of the Q-type is greater when the crystal is centro- 
symmetric than when it is non-centrosymmetric, under 
similar conditions. 

It was mentioned in part I that, in connection with 
the resolution of the twofold ambiguity in the process 
of phase determination by the anomalous-dispersion 
method, it would be useful to know the frational num- 
ber of reflexions for which 0 < 90 ° for a given a 2 corres- 
ponding to the various cases. The required data are 
now available in the middle column of Table 1. From 
this table it is clear that, if we choose the acute angle 
(say 00) out of the two possibilities, namely 0 and rc - 0 ,  
then the percentage of reflexions whose phases are cor- 

rectly determined will be a maximum when P is just 
one in number and is least when the P-group consists of 
many atoms with a centrosymmetric configuration. 
However, the few reflexions for which the true phase 
is actually equal to the obtuse angle re-00 would lead 
to wrong Fourier coefficients if we choose the acute 
angle for all the reflexions and such wrong coefficients 
will lead to spurious details in the Fourier map. In 
such cases, it seems useful to use a weighting function 
in which both the possible phases are given weights 
according to the probabilities with which they occur. 
Such a weighting function has been derived in this 
department. This weighting function is under test and 
the results will be published separately (Parthasarthy, 
Ramachandran & Srinavasan, 1964). 

The results of the theory have been tested with the 
data from actual crystals as well as hypothetical two- 
dimensional models. The complete data regarding the 
tests are given in Table 2. In each case the mean value 
of cr 2, say (a2), was obtained as described in part I 
and the theoretical curve corresponding to the value 
of (try) was drawn by interpolation. The experimental 
data in each case are seen to agree with the corres- 
ponding theoretical curve, as is evident from Fig. 4. 

1'0 

0'8 

0"6 
N(e) 

04 

02 

0 

~ ~ - -  - - - - _ ' 5 -  . . . .  .o. 

310 6'0 9'0 1:90 150 180 
O IN DEGREES 

(a) 

1 " 0  

0"8 

0"6 

N(e)0. 4 

0 2 ~  

i I ! 

0 310 60 910 120 150 180 
e IN DEGREES 

(b) 

Fig. 4. Verification of the cumulative functions N(O) for (a) 
the one-atom and many-atom (P-acentric) cases and (b) the 
two-atom case respectively. 
In (a) • -P455  and × =the one-atom case; in (b) &= 
L-tyrosine HBr, x = L-tyrosine HCI and • = cellobiose plus 
two chlorine atoms. 
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A P P E N D I X  A 

If we substitute FP/V2ap=cos (~0/2) in the first term 
on the right hand side of (13), we get 

1 exp [ - 2 a  2 cos 2 (~o/2)/cr2ld~o I1 = - ~ -  0 

- lr 2 exp ( - a 2 / a  2) exp (_a2  cos q)/a2)d~o 
0 

1 
- -  - - a 1 / a 2 ) l o ( a l / 6 2 )  , exp( 2 2 2 2 

7z 
(A-l) 

where Io(x) is the Bessel function of imaginary argu- 
ment, of order zero. The second term on the right- 
hand side of (14) can be written 

2b I l x exp ( - a 2 x  2) dx 
~3/2 0 V 1 -- X 2 

2b (l x exp ( - a 2 x  2) e r f ( b x ) d x = I ' + I " ,  say. 
+ ~ 3o VI-x 2 

(A-2) 

If we expand exp ( - x )  in terms of hypergeometric 
series (Sneddon, 1961; problem l l(i) p. 46), then I '  
becomes 

I ' - 2 b  f"0 X l F l ( C t ; ~ ; - a 2 x 2 ) d x "  (A-3) 
7'£3/2 ]//i -- x 2 

Making the substitution x 2--y in (A-3) we get 

I '  b f 1 - (1 -Y)-~lFl(g; c~; -a2y)dy ,  
7~3/2 0 

which on integration becomes (Sneddon, 1961; p. 47, 
problem 16(i)] 

= l ,  ½)2F2(~, 1 ; 6, 3 ;  _ a  2) 

2b 
_ _  7~3/2 1F1(1,~-,3" _a2). (A-4) 

If erf (x) is represented by the hypergeometric function, 
I "  in (,4-2) can be written (Erdelyi, 1954, Vol. 2, p. 295) 

I"  _ rc 3/z2b 11 x exp,/~ ( -- a2x 2) × 
0 V 1 ~  X 2 

2bx 
]/~z exp (-bZx2)1Fl(1; 3 ; b2x2) dx . 

On substitution xZ=y, (A-5) becomes 

(A-5) 

i 2 2Iiy,,, - rr 2 - Y ) - * e x p ( - e y ) l F l ( 1 ; a ; b Z y ) d y ,  

(A-6) 
where 

a Z W b Z = ( 2 t r 2 / t r 2 ) ( c o s  2 0-bs in  2 0 ) = 2 a 2 / a ~ = c .  (A-7) 

Expanding exp ( -  cy) into a power series, (A-7) can be 
written 

I " -  2b2 ~ ( - c ) n  f I yn+~(1--y)-+lFl(1; 3; b2y)dy, 
7~2 n=O H. f ,~0" 

(A-8) 
which on integration becomes [Sneddon, 1961; p. 47, 
problem 160)] 

I "  2b2 ~ ( - c )  n s.3 • 
- 7r 2 ,~o ---n.7---  f l(n + a ,  ½)2F2(1, n +~ ,~ ,n  + 2, b2). 

(A-9) 

Table 2. Details of  the crystals used for the verification of  the theoretical results 
Plane N(90 °) 

No.* Type Crystal Plane t r 1 2  Theoretical Experimental 

1 One-atom case Hypothetical pl  0.615 96.0 % 94.7 % 
(C9C1) 

2 Two-atom case L-tyrosine HBr pg  0.843 94.8 91-3 
C9H11NOaHBr 

3 Two-a tom case L-tyrosine HCI pg  0.474 84.8 88.1 
C9HI INOaHCI 

4 Two-atom case Hypo the t i ca l -  pg  0.3 77.0 75.8 
Cellobiose + 2Cl 
C12011 H22C1 

5 Many-atom case Based on pg  0.82 94.8 93.8 
(P-group phosphorus 
non-centrosymmetric) pentasulphide 

P4S2(3S)3 
* 1. This 2-dimensional hypothetical structure (C9CI) consists of 9 carbon atoms and 1 chlorine atom randomly distributed in 

a rectangular cell. 
2. This crystal was solved by Srinivasan (1959a). 
3. This crystal was solved by Srinivasan (1959b). 
4. Into the structure of cellobiose (Jacobson, Wunderlich & Lipscomb, 1961) two chlorine atoms were introduced to make 

it a hypothetical structure with heavy atoms. 
5. In the structure of P4S5 (van Houten & Wiebinga, 1957) three of the sulphur atoms in the asymmetric unit were assumed to 

scatter three times as strongly as a 'real' sulphur atom (see Ramachandran  & Ayyar, 1963) and this makes the structure a 
suitable hypothetical crystal with heavy atoms. 



1034 PROBABILITY D I S T R I B U T I O N  OF PHASES IN A CRYSTAL WITH HEAVY ATOMS. II 

In (A-2), if we put x 2 =y, we get 

+ I "  - b i I (1 -y ) -~  exp (-aZy)[l +er r  (b1/y)]dy I '  
~3/2 ~0 

2b !l ° 
- rc3/2 exp (-aEy)[1 +er f  (b1/y)]dV1 - y ,  

which on integration by parts gives 

I ' +  I " =  - 2__b_b [exp (-a2y){1 +erf(b I/y)}l/]-Z-_y]o l 
g3/2 

2b 
I x ] / ] - -y  d[exp (-aEy){1 +e f t  (bl/y)}] . (A-10) 

+--~- o 
Since the first term on the right-hand side vanishes, 
and since 

d[erf (bl/y)]=b exp (-b2y)/I/rcy, (A-10) 

can be written 

2b 
I '  + I "  = ~3/2 

2a2b 
11 (1 -y )*  exp (-a2y)  [1 +e f t  (b1/y)]dy 

7t3/2 _0 

2b2 f I y-~(1 -y)~  exp [-(a2+b2)y]dy . (A-1 1) 
+--~- o 

Putting 1/y=z, the last term in (A-1 1) becomes 

4b2 f I ]//1-z 2 exp (-2a~z2/a~)dz. 
7~2 0 

However, z is a dummy variable so that for uniformity 
of representation it can be replaced by y. Hence (A-1 1) 
becomes 

2b 
I ' + I "  - ~3/2 

2a2b 
I l 1/1 - y  exp (-a2y)[1 +erf(b1/y)ldy 

~3/2 0 

4b2 I '  I/'-i---Y2 exp (-2a2y2/a22)dy. (A-12) 
+ - - Z o  

A P P E N D I X  B 

We shall first work out the integral 13 in (22). This is 

l/2 40 exp (-F2e/e~)d(FP/eo) 
13- n 3/2 axalv o 

00 
roll2, alan ' 

which, on making the substitution from (21a), becomes 

I~ =~d.I/-f + ,ft .  ( 8-1) 

The second integral in (22) is/4, namely 

/ 4 -  1/2 cos 0 IFPI exp (-Ifplz/Q2)[1 
7~0"10"2 0"2 0 

+ef t  (IFPI cos O/a2aN)]dFp 

and 

ioo _ 02 cos 0 [1 
nl/2~,~2~ 0 

+er f  ([Fv[ cos O/a2aN)]d[exp (-[Fp[2/oE)], 

which, on integration by parts, gives 

I4 = -k2[{1 +e f t  (k2Fv)} exp (-F2/02)]~ + 

+k~ exp (-F~/o2)d[1 +ef t  (k2FP)]. (B-2) 
o 

Here 
~0 2 COS 0 1'2oho'2 cos 0 

rc I/2ala2a 2 zc(1 + a 2 -- 2a 2 cos 2 0)- '  

k2 = COS 0/rY2aN, (B- 3) 

where (21b) has been used. Since d[erf(kzFp)]= 
(2k2/I/zr) exp ( 2 2 -k2Fv) ,  (B-2)simplifies to 

2k2k2 ~ 1 

=k~+ {k~k2/ l /k~+(1/Oz)  } • (B-4) 
Substituting for k~, k2 and 0 from (B-3) and (21b), 
(B-4) gives 

] / 2"a l azc° s0  [ V'2trx c°s 0 ] (B-5) 
14 ~--- ~( 1 ~-d l  2- ~-2t7~ C-OS 2 0) ] ÷ l/1 + a 2 " 

A P P E N D I X  C 

If we put 
2 cos 0 cos 0 

l/rca~a2a~ v - Pl and --a2aN --P2 (C-l) 

in (27), we have 

S ° e([0l)= 2 IfP[ exp ( - ] f  pl2/k~)dlf P[ 2 2 ~0" 10"N 0 

+Pl IFPl2exp(-lFPl2/kZ)dlfPI 
0 

S ° ÷px IFpl 2 exp ( -  Ifpl2/k 2) erf(p21FpI)dlFpl 
0 

=/s+16+17,  say. (C-2) 

On integration,/5 gives 

h = (ko~/~o,2o-~) = ~ / = ,  (¢-3)  
since 

2 2 k~ = a la2~  (equation 26a). 

Using equation 381, p. 820 of Korn & Korn (1961), 
16 becomes 1/nplk3/4, which on substitution for Pl and 
k from (C-l) and (26b), gives 

/6 = 0"10"2 2 c o s  0 (C-4) 
2(1 - a~  cos z 0) 3/2 " 

From (C-2), 17 can be written 

I ° 
/7= - -k2p--Z IFPI erf (p21FpI)d[exp (-IFpl2/k2)l,  

2 o 

which on integration by parts gives 
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/7= - k2p----L [IFPI erf (pzlFPI) exp (-IFvl2/k2)]g 
2 

+ k ~  - - - L  i ;  exp (-[FPl2/k2)d[IFPI erf (pzlFP[)]. (C-5) 

Since, on applying the limits the first term in the right- 
hand side of (C-5) vanishes, we have 

k2pl l ;  
17= ~ exp (-IFelZ/k 2) erf (p2[Fvl)dlFPI 

S kZplP2 IFPI exp [-(1/k2+p2)lFvlZ]dlFPI 
+ I~--Y- o 

- I 1 ± r l l  say (C-6) --,~ 7 ~ 7  , 
Now 

1 1 --0"2 COS 2 0 COS 2 0 I 1 
k 2 + p 2  = ,.r2tr2,.r~2 -~- 2 2 -- ~2~2,-r2 -- k02" L, 1~,2v N 0"20".77 ~, ltJ2~,N 

(C-7) 

If we put [FPI/k =y in (C-6) and use (C-7), we get 

plk3 exp (_y2) erf (p2ky)dy I7= - U -  ° 

P'PzkZk2 g ° 
+ 21/r c exp (-IFel2/k2)d(lFP[Z/k2o) 

pzk 3 1 plp2k2k 2 
- 2 l/re tan-l(pzk)+ 2l/rc ' (C-8) 

where equations (25) and (28) of part I have been used. 
If we substitute forp~, Pz, k and k0 from equations (C-l) 
and 26a, b), the equation (C-8) gives 

2 2 0"10" 2 COS 2 0 
/7= zc(1 _0"2 cos 2 8) 

0"1 o.2c°sO [ a l c ° s 0  ]. (C_9) 
+ ~z( l~2cos  2 8) 3/2 tan-1 V1 _0.2 cos 2 0 
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Calculation of Absorption Corrections for Camera and Diffraetometer Data 
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A method is described for the calculation of absorption corrections for Weissenberg and precession 
camera, and three- and four-circle diffractometer data. The method has been successfully applied' to 
a number of crystals. 

Introduction 

Several procedures for computation of absorption cor- 
rections have been described. Busing & Levy (1957) 
have first outlined a method suitable for high-speed 
computers and valid for crystals having no re-entrant 
angles between bounding planes. However, they did 
not derive the components along the crystal axes of the 
incident and diffracted beams for upper level reflexions. 

Such an extension for both Weissenberg and precession 
camera data has been given by Wells (1960). Here we 
propose an alternative procedure which makes exten- 
sive use of vector algebra and has also been applied to 
three- and four-circle cone diffractometers, since these 
are now widely used for collection of X-ray and neu- 
tron diffraction data. 

A FORTRAN program has been written for the 
CDC 1604 computer which in its present form calcul- 


